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Accessible

Figure 1: Designers can support accessibility for people with Intellectual and Developmental Disabilities (IDD) by avoiding 
pie charts, encouraging natural metaphors and support for working memory, balancing semantics and simplicity, and using 
discretization with axis-aligned encodings. 

ABSTRACT 
Using visualization requires people to read abstract visual imagery, 
estimate statistics, and retain information. However, people with 
Intellectual and Developmental Disabilities (IDD) often process 
information diferently, which may complicate connecting abstract 
visual information to real-world quantities. This population has 
traditionally been excluded from visualization design, and often 
has limited access to data related to their well being. We explore 
how visualizations may better serve this population. We identify 
three visualization design elements that may improve data acces-
sibility: chart type, chart embellishment, and data continuity. We 
evaluate these elements with populations both with and without 
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IDD, measuring accuracy and efciency in a web-based online ex-
periment with time series and proportion data. Our study identifes 
performance patterns and subjective preferences for people with 
IDD when reading common visualizations. These fndings suggest 
possible solutions that may break the cognitive barriers caused by 
conventional design guidelines. 
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1 INTRODUCTION 
Over one billion people—about 15% of the world’s population—lives 
with some form of disability [3]. About one in six children in the U.S. 
has one or more developmental disabilities [16], with Intellectual 
Disabilities (ID), such as Down Syndrome, Fragile X Syndrome, and 
Develomental Delay, being the most common. Other common types 
of developmental disabilities include Autism Spectrum Disorder 
(ASD) and Cerebral Palsy. People with Intellectual and Developmen-
tal Disabilities (IDD) may learn about and make sense of abstract 
information diferently from other people [35]. Students with IDD 
often exhibit symptoms that directly or indirectly require changes 
to their exposure to mathematical and statistical reasoning skills 
in school. These symptoms may also shift the ways these students 
translate visual information into actionable knowledge [52]. Visu-
alizations rely on these abilities to help people make sense of data. 
However, the design of such systems seldom considers people with 
intellectual and developmental disabilities (IDD), leaving us with 
little insight into how well conventional mechanisms for data visual-
ization, communication, and exploration support people with IDD. 

While abundant eforts have been made to establish guidelines 
for efectively communicating data [21, 42, 55], we have limited un-
derstanding of how well these guidelines hold for people with IDD. 
The cognitive challenges imposed by these disabilities are not well 
understood, nor are the ways in which those challenges interact 
with visual and semiotic literacy. Experimental fndings can provide 
both quantitative and qualitative evidence to inform guidelines on 
efective visualization design [19, 37]. However, the development 
of such guidelines often involves a limited set of human subjects, 
and the results might not generalize for people with IDD. This pop-
ulation usually has inadequate access to information and has been 
excluded from efectively using visualizations to investigate and 
understand data related to their well-being. Our goal in this work 
is to understand how efective visualization design for people with 
IDD may difer from conventional guidelines in order to identify 
potential barriers to data use. 

Accessible visualization research has traditionally been focused 
on developing techniques rather than guidelines, mainly for color 
vision defciency and visual impairment [18, 20, 39, 43]. Current 
understanding of visualization accessibility for people with IDD 
is grounded in anecdotal evidence and implications drawn from 
experimental results in education and disability studies [58]. In this 
paper, we instead focus on providing empirical insight into aspects 
of visualization design that may support or inhibit people with 
IDD. We build on fndings from disability studies and frst-hand 
experiences of relevant practitioners to identify three facets of vi-
sualization design that may infuence data accessibility: chart type, 
chart embellishment, and data continuity. Drawing on clinicians’ 
experiences, we expect that the optimal mapping of tasks to chart 
types like line charts, pie charts, and treemaps will difer for peo-
ple with IDD. IDD often inhibit connecting abstract mathematical 
values to the real world quantities these numbers represent [52]. 
However, semantically meaningful pictorials like icons and chart 
junk can improve memorability [11] and may reinforce the con-
nection between data and meaning [61]. Using discrete, countable 
representations, such as isotype visualizations [27], may provide 

further links between visual quantities and the abstract concepts 
they represent and beneft working memory [61]. 

To evaluate these design elements, we conducted a mixed-
method web-based remote experiment with participants with and 
without IDD using time-series and proportion data related to self-
advocacy. Although comparing these populations is not standard 
practice in accessibility research, we use non-disabled participants 
as a baseline to identify potential barriers to efective visualiza-
tion use. While our experimental design drew on experiences of 
clinicians and practitioners, we noted the subjective preferences of 
people with IDD alongside standard measurements of task comple-
tion accuracy and efciency to generate participatory insight into 
efective practices and new directions for accessible visualization 
design [53]. We used these instruments to identify performance 
diferences across four tasks and two data types: trend estimation 
and extrema identifcation in time series data, and value estimation 
and value comparison in proportion data. 

Our results indicate that IDD populations are more sensitive 
to design choices than non-disabled populations and that their 
needs at times contradict conventional design wisdom. While the 
benefts of explicit semantic information are mixed, chart types that 
mirror real world metaphors, simple imagery, and discretizations 
of axis-aligned representations can all enhance data accessibility. 
Our fndings illuminate several new opportunities for accessible 
visualization design. 

Contributions: The primary contribution of this work is a set 
of design guidelines for making visualization accessible to people 
with Intellectual and Developmental Disabilities. We collected both 
quantitative performance data and qualitative feedback from popu-
lations with and without IDD. The fndings of this study enhance 
our understanding of visual analytics for people with IDD and chal-
lenge us to refect on how best practices for visualization design 
extend to various populations. The results of our study provide 
preliminary guidance for how to break cognitive barriers caused 
by conventional design guidelines. 

2 RELATED WORK 
Intellectual and Developmental Disabilities (IDD) can take many 
forms, and people with IDD are diferent in many ways. Instead of 
taking IDD as an umbrella term, we focus on individuals with an 
intellectual disability (ID) and/or with autism spectrum disorder 
(ASD) in our study to understand their unique needs for data analy-
ses. We surveyed literature and consulted domain experts to expand 
our knowledge of this population and situations and limitations to 
their use of data. Building on the knowledge of mathematical and 
special education, we identifed cognitive aspects of visualization 
sensemaking that may diferentiate these individuals from the non-
disabled population. We revisited conventional visualization design 
guidelines related to these aspects to develop our preliminary hy-
potheses. We also reviewed progress on cognitive-friendly assistive 
technology and web accessibility to seek practical solutions. 

2.1 Intellectual Disability and Neurodiversity 
According to American Association on Intellectual and Develop-
mental Disabilities (AAIDD), an intellectual disability is a disabil-
ity that is broadly related to thought process, characterized by 



Understanding Data Accessibility for People with Intellectual and Developmental Disabilities CHI ’21, May 8–13, 2021, Yokohama, Japan 

signifcant limitations both in intellectual functioning (reasoning, 
learning, problem solving) and in adaptive behavior, which cov-
ers a range of everyday social and practical skills. This disability 
originates before the age of 22 and is likely to be lifelong [2]. Neu-
rodivergent [57], as opposed to neurotypical, usually refers to a 
person who has a developmental disorder and/or a mental illness. 
Several recognized types of neurodivergence, include autism, As-
perger’s syndrome, dyslexia, dyscalculia, epilepsy, hyperlexia, dys-
praxia, ADHD, obsessive-compulsive disorder (OCD), and Tourette 
syndrome (TS). As neurodiversity still lacks a clear medical def-
inition, we include and only include individuals with autism in 
our investigation. Autism, or autism spectrum disorder (ASD), is a 
developmental disability that can cause signifcant social, commu-
nication, and behavioral challenges. The learning, reasoning, and 
problem-solving abilities of people with ASD can range from gifted 
to severely challenged [7]. 

Intellectual and other developmental disabilities often co-occur, 
and their symptoms usually vary from person to person. As of the 
most recent prevalence study [40] conducted by the Centers for 
Disease Control (CDC), which reported the co-occurring intellec-
tual disability among children aged 8 years, 33% of children with 
ASD had intellectual disability; 24% of children with ASD were 
considered in the borderline range in terms of intellectual ability 
(an IQ of 71–85); 42% had IQ scores over 85, considered average 
or above average. Given the range and diversity of abilities within 
the IDD community, it is both difcult to link design guidelines 
to specifc abilities and to design universal solutions for all people 
within this population. However, due to the shared characteriza-
tion that both intellectual disability and autism frequently cause 
diferences in cognitive abilities related to sensemaking and to the 
high prevalence of their co-occurrence, we restrict our scope to 
individuals with intellectual disabilities and ASD. These groups 
represent a strong use case as there is an increasing trend in these 
groups of using data for self-advocacy and decision-making, as 
evidenced by the CDC’s Autism Data Visualization Tool [6], the 
State of the States project,1 and ASAN.2 This grouping is also inline 
with established practices adopted by domain specialists in AAIDD 
(American Association on IDD). Insights into cognitive behaviors 
of these individuals may enhance our understanding of design-
ing accessible visualization for more general classes of cognitive 
disabilities, but we leave this hypothesis to future work. 

2.2 Mathematical Reasoning & Cognitive 
Disabilities 

Visualizations help people rapidly recognize patterns and trends in 
data [29]. Reading and interpreting visualizations, however, take sig-
nifcant cognitive efort, including quantitative reasoning, statistical 
estimation, and information retention [9, 46]. These mechanisms 
typically function diferently for people with IDD. For example, 
studies in education have identifed variations in how people with 
cognitive disabilities approach mathematical reasoning through 
images. Monague [41] found that students with learning disabilities 
used diferent strategies to solve mathematical problems than non-
disabled populations, leading to challenges transforming abstract 

1https://stateofthestates.org/
2https://autisticadvocacy.org/ 

numerical information in word problems into mathematical oper-
ations. Van Garderen [52] confrmed a prior positive correlation 
between the use of spatial visualizations and higher mathematical 
problem-solving performance for non-disabled students. However, 
students with IDD struggled to use spatial visualizations, instead 
using signifcantly more semantically-meaningful pictorials when 
solving word problems. Zhang et al. [61] extended these results 
to show that intelligently designed pictorial images could signif-
cantly improve performance on word problems for students with 
disabilities. These pictorials used fll color to slightly alter the visual 
representations based on theories about working memory processes 
and led to improved spatial reasoning. 

These studies collectively show that students with cognitive dis-
abilities often prefer using semantically-oriented images to make 
sense of mathematical concepts, and that fgures carefully designed 
to operate independently of limitations in working memory could 
signifcantly improve abstract mathematical reasoning. These re-
sults provide preliminary evidence that the right kinds of visu-
alization design cues may also lead to more accessible visualiza-
tions for people with cognitive disabilities. We connect these ideas 
to two concepts in visualization through our study: semantically-
meaningful embellishments (i.e., chart junk and icons) to en-
hance semantic reasoning and discretization to support working 
memory. 

People with disabilities also often face external obstacles to vi-
sualization use, including lack of visualization literacy due to vari-
ations in educational opportunities [35, 52] and inadequate repre-
sentation in visualization research studies. Recent eforts towards 
understanding visualization literacy ofer frameworks for devel-
oping and assessing people’s abilities to read and construct data 
visualizations. For instance, the data visualization literacy frame-
work (DVL-FW) works towards developing standards for teaching 
and assessing visualization literacy [14]. VLAT provides an instru-
ment to measure visualization literacy [38]. Other eforts explore 
optimal means for communicating data to populations with dif-
ferent expected levels of data literacy, including both objective 
performance and emotional valence [24]. However, these studies fo-
cus on non-disabled populations. According to the U.S. Department 
of Education, only 17% of students with intellectual disabilities 
spend most of the school day inside general classes [5], lowering 
exposure to traditional mathematical and statistical concepts, in-
cluding basic visualization use and literacy. This lack of statistical 
exposure coupled with known diferences in cognitive processing 
mean that we have little insight into how well traditional assess-
ments of visualization literacy work for people with IDD nor do 
we have insight into how visualizations may be designed to help 
overcome these challenges. 

2.3 Guidelines for Visualization Design 
Guidelines for visualization design are based on how people process 
visual information. Empirical studies grounded in perception and 
cognition map chart types to the data types and analysis tasks they 
best support [8, 47]. For example, people tend to make comparative 
judgments between values using bar charts but focus on trends in 
line charts [60]. Scatterplots allow for precise estimates of correla-
tion [28]. However, these guidelines are derived from experiments 

https://2https://autisticadvocacy.org
https://1https://stateofthestates.org
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with neurotypical populations and may not hold for viewers with 
IDD. For example, prior work shows that part-to-whole compar-
isons are more efective with pie charts than with stacked bars [48]. 
However, discussions with experts who design informational ma-
terials for IDD self-advocacy suggest that individuals with IDD 
tend to understand stacked bars better than pie charts. Experi-
ments in mathematical studies indicate that students with disabili-
ties use diferent strategies to translate math problems into corre-
sponding visualizations [52]. These conficts suggest that traditional 
mappings between chart types and tasks may not directly translate 
to viewers with IDD. 

Further, heuristic guidance about visualizations may also make 
assumptions that introduce accessibility barriers to individuals with 
IDD. For example, visualizations are encouraged to maximize the 
data-ink ratio, encoding data using minimalist designs to maximize 
the focus on data [51]. However, this minimalism may make it dif-
cult for people to connect data to meaning [25, 33]. Meaningful em-
bellishment may create cognitive benefts for visualization [13, 32]. 
Hullman et al. found that introducing extra visual images may 
better engage the user to read information and improve their com-
prehension and recall [32]. Borkin et al. found that pictorial cues 
could enhance memorability when used appropriately [13]. Haroz 
et al. found that isotypes—discrete visualizations using pictorial 
icons—have positive efects on working memory and the speed 
of fnding information [27]. The increased semantic connection 
and support for working memory found in these studies aligns 
well with preferences for pictorial cues [52] and working memory 
aids [61] used by students with IDD in mathematical reasoning. The 
cognitive benefts of such design components, while controversial 
for traditional populations, may signifcantly improve usability for 
people with IDD. 

While these studies ofer tacit design hypotheses about accessi-
ble visualization, empirical studies can provide direct insight into 
understanding accessible visualizations [23, 31, 59]. For example, 
Delogu et. al. [23] found that integrating sonifcation into maps 
could negate performance diferences between sighted and non-
sighted users. Yang et. al. [59] measured how tactile graph repre-
sentations support diferent tasks for BLV users. Despite changes in 
abilities and media, they generally found similar mappings between 
task and visualization for sighted and non-sighted users. However, 
we lack substantial insight into how well visualization designs can 
support viewers with IDD. This study builds on the above evidence 
to test how visualizations may begin to address challenges for cog-
nitively accessible visualizations and craft preliminary empirical 
guidelines for more inclusive practices. 

2.4 Web Accessibility & Assistive Technology 
for Cognition 

The web is an important platform for interactive visualizations. The 
World Wide Web Consortium (W3C) and the Web Accessibility Ini-
tiative (WAI) have outlined several standards, tools and techniques 
to enhance web accessibility. For example, the W3C Cognitive Ac-
cessibility User Research [4] describes the challenges of using web 
technologies for people with learning disabilities or cognitive dis-
abilities, particularly in the areas of attention, executive function, 
knowledge, language, literacy, memory, perception, and reasoning. 

This document suggests that people with intellectual disabilities 
usually have far stronger visual memory compared to verbal mem-
ory, but notes that they can experience visual-processing difculties, 
such as when extracting meaning from written material, or strug-
gle with mental overload that comes from large amounts of text 
or unfamiliar content or design elements. To remedy these chal-
lenges, guidelines from these agencies recommends using added 
visual elements like fow charts to break down procedures and pic-
tograms and graphics to communicate location information. For 
people with autism, who frequently have afected visual compre-
hension and unusual sensory reactions, guidelines include avoiding 
distractions, presenting information in smaller units, and pairing 
icons or graphics with text to provide contexual cues to help with 
content comprehension. 

Unlike screen readers and magnifers for vision impairment or 
alternative input devices for mobility impairment, few assistive 
technologies directly support cognitive disabilities. The WAI intro-
duces adaptive strategies and accessibility features [54] that may 
help people with IDD interact with the web. For example, designers 
can use progressive disclosure techniques to manage visual com-
plexity, showing the minimal information or functions necessary 
for a given task or use icons instead of text to represent words 
or concepts. However, these guidelines and techniques focus on 
general web content and provide limited insight into less standard 
content such as visualizations. 

Research on designing accessible web visualizations has histori-
cally emphasized two main areas: color vision defciency (CVD) and 
vision impairment. Color vision defciency afects roughly 8% of 
the global population [12]. The W3C has developed comprehensive 
guidelines to make color-coded content distinguishable for people 
with color blindness and impaired vision[22]. Daltonization algo-
rithms adjust digital images to make colors more distinguishable 
(see Simon et al. [49] for a survey), and tools exist for understanding 
and addressing CVD challenges using these algorithms and related 
approaches [18]. Solutions for blind and low-vision (BLV) analysts 
tend to focus on incorporating sonifcation and voice-based inter-
actions into visualizations. For example, Choi et al. interviewed 
visualy impaired users and proposed an algorithm to automatically 
extract key information from online charts and read that infor-
mation to users [20]. Charting libraries like amChart integrate 
compatibility with screen readers to better serve visually impaired 
users [1]. 

Insights into cognitive-friendly web accessibility and accessible 
features can help develop accessible web-based visualizations; how-
ever, it will require user-centered processes to be truly efective [53]. 
For example, Lundgard et al. introduced a set of sociotechnical con-
siderations for accessible visualization research grounded in a case 
study of a design workshop in collaboration with the blind [39]. 
We see the development of such guidelines as a necessary longitu-
dinal and multifaceted efort to examine visualization accessibility 
through a variety of lenses. To ofer preliminary insight into the 
need to explicitly design for people with IDD, we seek to understand 
how the ways people with IDD read visualizations may difer from 
the traditional populations used to generate and verify visualiza-
tion design guidelines. We conducted a preliminary mixed methods 
study designed in collaboration with self-advocacy experts and with 
feedback from community members. We additionally draw on both 
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quantitative and qualitative information refecting the experiences 
of people with IDD in analyzing the results of the study. 

3 MOTIVATION & HYPOTHESES 
Data visualization is increasingly important in many aspects of life, 
from education and employment, to health care and fnance. Despite 
the growing demand and availability of data, visualization literacy 
is relatively low among people with IDD, and data accessibility 
remains a major challenge. 

Discussions with domain experts, including people with IDD, 
psychiatrists, and caretakers, revealed that conventional visualiza-
tion designs are often inaccessible to people with IDD. People who 
design data-oriented materials for use by the IDD community have 
developed heuristics based on their own experiences but feel these 
heuristics are often ad-hoc solutions that vary across organizations. 
For example, experts consistently noted that people with IDD face 
signifcant challenges in reading pie charts—when two values are 
very close, people fnd it impossible to tell which slice is bigger—but 
feel more comfortable with stacked bar charts. They noted that pop-
ular visualization tools lack visual guidance for connection data to 
meaning. Experts expressed a strong desire for evidentiary support 
in designing accessible visualizations for people with intellectual 
and developmental disabilities. Using these discussions as guides, 
we aimed to understand whether (a) design guidelines for non-
disabled populations generalize to viewers with IDD and (b) if not, 
how we might make visualizations more accessible. 

In collaboration with a psychiatric expert specializing in IDD and 
self-determination, we identifed the two important data types to 
ground our investigation—time-series budgetary data and propor-
tion demographic data—and four associated analysis tasks—trend 
estimation and extrema identifcation in time series data and value 
estimation and value comparison in proportion data. Building on 
expert guidance and fndings from disability studies and visualiza-
tion research, we identifed three elements that might contribute 
to the design of cognitively accessible visualization: chart type, 
chart embellishment, and data continuity. We defned chart types 
as those commonly used with our target data types and largely 
refected in our collaborators’ current eforts: bar charts, line
charts, pie charts, stacked bar charts and treemaps. Building
on observations about pictorial use in education [52, 61], chart 
embellishments test the efects of semantically meaningful pictori-
als including icons and chart junk, compared to classic abstract
marks. Finally, drawing from observations about working mem-
ory and spatial reasoning [27, 61], we measure continuity using 
data represented through either continuous (e.g., a stacked bar)
or discrete (e.g., a stacked isotype) marks.

Drawing on prior literature and discussions with domain experts, 
we hypothesize that: 
H1–The best chart type for a given task will difer between people
with and without IDD. 

Studies from education indicate that people with IDD may pro-
cess visual information diferently for mathematical reasoning 
tasks [52, 61]. We anticipate that these diferences will lead to 
diferent mappings between tasks and visualization designs. 
H2–Semantically meaningful chart embellishments will enhance
data interpretation for people with IDD. 

Both studies and conversations with experts note a heavy re-
liance on pictorials to facilitate mathematical reasoning for people 
with IDD [52]. Meaningful semantic information can improve visu-
alization interpretation and recall [13, 32] and may likewise serve 
to scafold better connections between data and meaning. 
H3–Discrete data representations will lead to more accurate per-
formance for people with IDD. 

Haroz et. al. found that discrete isotype visualizations could im-
prove analyses and interact with working memory in benefcial 
ways [27]. Given that pictorials annotated to support limited work-
ing memory improve geometric reasoning for people with IDD [61], 
visualizations leveraging similar mechanisms may enable similar 
improvements. 

4 METHODS 
We tested our hypotheses using a mixed methods study to investi-
gate how visualization design needs difer for people with IDD. This 
study coupled a formal experiment measuring performance across 
diferent visualization designs with semistructured interviews to 
elicit subjective preference and insight into potential diferences 
in the ways the two populations read visualizations. The experi-
mental design team consisted of both visualization experts and a 
psychiatrist with extensive experience in designing data-oriented 
material for self-advocacy in the IDD community. Several factors 
in the study design were adjusted to accommodate the needs of 
our target population. We explicitly indicate those considerations 
below. 

Our experiment was divided into two phases—one using time se-
ries data framed as budgetary analysis and a second with proportion 
data framed as demographic analysis—with interview sessions in-
terleaved between. We used these semantic framings to ground our 
investigation in known data for self-advocacy [17]. The two phases 
followed the same general procedure with specifc diferences ex-
plicitly noted below. We tested four independent variables—chart 
type, chart embellishment, data continuity, and ability level—and 
two dependent variables—task completion accuracy and response 
time—across four diferent analysis tasks. 

4.1 Stimuli 
Each trial consisted of one visualization rendered on a white back-
ground using D3 [15]. All visualizations were scaled to fll a 900 × 
550 pixel canvas. Above each visualization was a title correspond-
ing to the context of the chart (e.g.,“Spending on Family Supports 
from 1996 - 2015”). The task question was displayed beneath the 
visualization along with radio buttons containing each response 
option. 

To encourage engagement with the data over the duration of 
the study, we grounded the data in tasks oriented towards the com-
munity [45]. Time series data consisted of 18 datapoints (one per 
year) between 1996 and 2015, with total expenditures in dollars 
on the y-axis, refecting budgetary information commonly used in 
self-advocacy scenarios. Proportion demographic data simulated 
the number of people in the United States with one of fve cognitive 
disabilities drawn from The State of the States report [17]. Each stim-
uli used a simulated dataset (c.f., §4.2.1), with the mapping between 
datasets and visualizations randomized for each participant. 
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Figure 2: Stimulus examples from each trial type. Visualiza-
tions in (a) represent extrema identifcation and trend esti-
mation tasks for time series data, and those in (b) represent 
value comparison and value estimation in proportion data. 
Each row displays variations in visualization design factors: 
chart type, continuity, and embellishment. 

Each visualization was constructed using a confguration of one 
of the fve target chart types, three embellishment types, and two 
continuity types. Each participant saw all thirty visualizations twice: 
once for each analysis task (c.f., §4.2). While we cannot describe 
each combination of design factors in detail here, we discuss spe-
cifc instantiations and important exceptions for each level of our 
independent variables, and show a subset of visualizations in Figure 
2. A full set of experimental stimuli and their implementations are
available at https://osf.io/vp4ac/.

4.1.1 Chart Types. Our selection of chart types largely refects the 
design decisions made in current data visualization eforts targeting 
populations with IDD [6, 17]. We tested two common time series 
chart types—line graphs and bar charts—and three proportion chart 

types—pie charts, stacked bar charts, and treemaps. These selec-
tions additionally mirror chart types compared in prior graphical 
perception studies focused on similar analysis tasks [34, 60]. 
Time Series (line graphs and bar charts): Time series visualiza-
tions displayed marks on a pair of black axes with no gridlines. 
Axes had tickmarks indicating each year on the x-axis and 1-step 
intervals representing units of 10 on the y-axis. The x-axis was 
labeled as “Fiscal Year”, and the y-axis was labeled as “Thousands.” 
Line graphs displayed data using a 2-pixel wide blue line. Bar chart 
marks consisted of 5-pixel wide blue bars. 
Proportion (pie charts, stacked bar charts, and tree maps): 
Proportion visualizations displayed fve categories of data using 
color: Intellectual Disability as red, Severe and Persistent Mental 
Illness as orange, Brain Injury as yellow, Stroke as light blue, and 
Alzheimers as dark blue. We opted for the chosen color palette 
for three reasons: it is color-blind safe, follows best practices for 
categorical color, and has a vibrant look that might enhance overall 
aesthetics and participants’ engagement. Pie charts arrayed data 
using a radial layout; stacked bars as a single vertical bar; and 
treemaps using a rectangular layout. Each visualization had a color-
coded legend rendered immediately to the right of the visualization. 

4.1.2 Embellishments. Imagery used to test embellishments con-
sisted of simple cartoon-style SVG graphics selected to maximize 
their relevance to the target data while minimizing any potentially 
extraneous information that could cause false associations with 
the data [10]. Embellishments for time series data focused on em-
phasizing connections to dollars by primarily encoding a United 
States dollar sign (all participants were recruited within the United 
States, §4.4). Embellishments for proportion data focused on demo-
graphics (number of people with a particular disability) and were 
represented using simplifed human silhouettes. Embellishments 
were applied to visualizations in three diferent levels: 
Abstract: Abstract marks consisted of traditional visualization
marks with no added semantic embellishments. For example, an 
abstract bar chart contained only rectangular bar marks. 
Chart Junk: While chart junk can involve complex imagery and
even shape the data layout [32], we implemented chart junk as a 
simple, single hue background image aligned with the basic mean-
ing of the data. We used a green cartoon stack of money labeled 
with a dollar sign for fnancial time series and a set of three blue 
human silhouettes for demographics data (Figure 2). This choice 
refects a desire to integrate familiar semantic content into the visu-
alization while avoiding potential perceptual confounds introduced 
by more complex imagery, such as shifting axis alignments when 
the chart junk guides the visualization layout [21] or signifcantly 
increasing the visual complexity of the visualization when the chart 
junk has high contrast or complex geometries. 

Chart junk is overlaid in the center of each visualization as a 
semitransparent image, rendered behind marks whenever possible. 
The transparency, size, and layout of the chart junk was manually 
adjusted in piloting to minimize occlusion with marks while still 
providing salient visual cues. For treemaps and bar charts, the image 
was placed in front of the marks with its transparency adjusted such 
that all bars were clearly visible through the image. Because donut 
charts and pie charts rely on similar perceptual mechanisms [50], 
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we place chart junk in the center of a donut chart for the pie chart 
condition to eliminate high-frequency visual artifacts that would 
otherwise arise from overlaying chart junk at the intersection of 
multiple wedge marks. 
Icons: In icon conditions, each mark is mapped to a single image.
To preserve the one-to-one mapping between marks and data, we 
used either a single dollar sign or a single human silhouette as our 
imagery for each icon. Icons use the same color schemes as abstract 
marks and are scaled to match the same dimensions as abstract 
marks where possible. For example, in bar charts, the height of the 
icon corresponded to the value of the datapoint while bar width 
remain fxed. 

Icon implementation varied slightly for continuous line graphs 
and for continuous proportion visualizations. For line graphs, we 
mapped icons to sample points along the line and rendered a line 
behind the icons at the same thickness as the icons. In piloting, 
aspect ratio distortions in treemaps and pie charts interfered with 
people’s abilities to recognize that the fgure was a human silhou-
ette. As our goal was to use icons to probe the role of semantic 
information in accessible visualization design, we preserved the 
original aspect ratio of icons in proportion visualizations during 
scaling (Figure 2). 

4.1.3 Continuity. The selected chart types use continuous channels 
to encode data by default. For example, bar charts use the height 
of a bar while pie charts use the angle of a wedge. To assess the 
role of continuity in accessibility, we replaced the equivalent space 
for each continuous mark with an array of 10-pixel wide circular 
marks (for abstract marks) or images (for icons) arrayed at regular 
intervals. We used d3-iconarray3 to implement discrete pie charts
and d3-wafe4 for discrete treemaps.

While we were able to use full icons in line graphs, tree maps, 
and pie charts without signifcant loss of information due to the 
uniform geometric structures of these visualizations, using full 
icon arrays in bar charts and stacked bars introduce signifcant 
imprecision due to rounding errors. We applied masks at partial 
values in discrete bars and stacked bars to match the length of 
the icon array to the corresponding data value. The efect led to 
the top icon being clipped at a level corresponding to the top of a 
continuous bar in discrete bar charts and to icons of multiple colors 
in discrete stacked bar charts. 

4.2 Experimental Tasks 
We evaluated two tasks for each dataset type: extrema identifcation 
and trend estimation for time series data and value comparison and 
value estimation for proportion data. The extrema tasks required 
participants to fnd the largest value. Trend tasks asked participants 
to assess the overall direction of the data (upward or downward). 
Value comparison tasks asked participants to compare the propor-
tions of three categories. Value estimation tasks asked participants 
to estimate the interval that a target category’s value fell into. 

We blocked our experiment by datatype, with block order fxed 
(time series then proportion) and tasks randomly ordered within 
blocks. We used a fx block order based on feedback from our 

3https://github.com/tomgp/d3-iconarray
4http://jkunst.com/d3-wafe/

collaborators to help participants with IDD start with what they 
anticipated would be a more familiar task to build confdence before 
progressing into the proportion tasks. We analyzed responses from 
each task separately. 

These tasks were crafted based on discussions with experts in 
the feld and based on the collaborating psychiatrist’s extensive 
experience with self-advocacy initiatives among the IDD commu-
nity. We chose to use trend estimation and extrema identifcation 
tasks for time series data as they can help estimate relative values 
and overall spending patterns for fnancial advocacy and policy 
making. Similarly, we chose value comparison and value estimation 
tasks for proportion data because they measure people’s abilities 
to reason about the prevalence of certain quantities, grounding 
arguments for funding distributions and similar policy decisions 
based on relative community populations. 

We framed each task using plain language with both wording and 
difculty tuned in piloting. Experts worried that asking participants 
to choose a correct answer from too many options, such as fnding 
the year where spending was highest from the 18 years visualized 
in the dataset, may lead to frustration amongst participants and 
high drop-out rates due to inaccessible visualization conditions. 
Based on this expert guidance and to control the total time needed 
to complete the experiment overall, we limited the set of possible 
responses per task to two (trend) to three (all other tasks) responses. 
The language and responses were as follows: 

Extrema: Which year has the highest spending? 
Possible answers: The highest overall year, the second highest overall
year, and a third year drawn at random 

Trend: Is spending going up or down over time? 
Possible answers: “Going Up” and “Going Down”

Value Estimation: What percentage of the population have 
<disability name>? 
Possible answers: “Less than 33%,” “33% - 66%,” or “More than 66%,”
with the named disability specifed according to the dataset. 

Value Comparison: Which of the following groups has a 
larger population? 
Possible answers: Three of the named disabilities whose values dif-
fered by a fxed amount. 

After fnishing a task block, participants completed a semistruc-
tured interview expressing their preferences and strategies for using 
diferent visualization types. Interview sessions were each com-
posed of six questions (three per task) structured hierarchically. 
Participants were frst shown the three chart types as abstract, con-
tinuous visualizations and asked to choose the chart type they felt 
best supported a given task. They were then shown the continuous 
and discrete versions of their chosen chart type and asked about 
their preference. Finally, they were shown the diferent embellish-
ment alternatives for the chosen chart and continuity level and 
asked their preference. Participants were encouraged to verbally 
discuss their preferences and thoughts for each question. 

We designed the subjective interview hierarchically such that 
each participant did not have to comb through all thirty stimuli 
at once but could still provide feedback on each of the variables 
tied to our hypotheses. This approach helped mitigate concerns 
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Table 1: Results from generalized linear models for accuracy and response time for each of four tested tasks. Bolded cells 
indicate signifcant efects (p < .05); standard text indicates marginal efects (p < .1); grey text indicates non-signifcant efects.

Design Consideration
Extrema Trend Value Estimation Value Comparison

Accuracy RT Accuracy RT Accuracy RT Accuracy RT

Disability χ2 1,32 =18.319, p<.001 χ2 1,32 =94.552, p<.001 χ2 1,32 =13.018, p<.003 χ2 1,32 =46.604, p<.001 χ2 1,32 =44.970, p<.001 χ2 1,32 =40.974, p<.001 χ2 1,32 =34.339, p<.001 χ2 1,32 =38.700, p<.001

H1
Chart Type χ2 1,32 =5.362, p<.021 χ2 1,32 =0.546, p<.460 χ2 1,32 =0.004, p<.948 χ2 1,32 =1.038, p<.308 χ2 2,32 =9.025, p<.011 χ2 2,32 =1.894, p<.388 χ2 2,32 =9.179 p<.010 χ2 2,32 =3.094, p<.213

Chart Type x Disability χ2 3,32 =2.073, p<.150 χ2 3,32 =2.441 p<.118 χ2 3,32 =0.050, p<.823 χ2 3,32 =0.002, p<.963 χ2 5,32 =10.264, p<.006 χ2 5,32 =0.821, p<.663 χ2 5,32 =0.131, p<.937 χ2 5,32 =2.218, p<.330

H2
Embellishment χ2 2,32 =0.271, p<.873 χ2 2,32 =3.752, p<.153 χ2 2,32 =1.695, p<.428 χ2 2,32 =7.953 p<.019 χ2 2,32 =2.395, p<.302 χ2 2,32 =1.319, p<.517 χ2 2,32 =3.577, p<.167 χ2 2,32 =1.202, p<.548

Embellishment x Disability χ2 5,32 =4.979, p<.083 χ2 5,32 =3.352, p<.187 χ2 5,32 =0.561, p<.756 χ2 5,32 =2.467 p<.291 χ2 5,32 =1.498, p<.473 χ2 5,32 =1.039, p<.595 χ2 5,32 =1.010, p<.603 χ2 5,32 =2.245, p<.326

H3
Continuity χ2 1,32 =8.106, p<.004 χ2 1,32 =0.081, p<.775 χ2 1,32 =0.414, p<.520 χ2 1,32 =3.446, p<.063 χ2 1,32 =0.981, p<.322 χ2 1,32 =0.636, p<.425 χ2 1,32 =0.094,  p<.759 χ2 1,32 =8.454, p<.004

Continuity x Disability χ2 3,32 =3.905, p<.048 χ2 3,32 =0.021, p<.885 χ2 3,32 =0.641, p<.423 χ2 3,32 =3.460, p<.063 χ2 3,32 =0.083, p<.774 χ2 3,32 =0.095, p<.758 χ2 3,32 =0.332, p<.565 χ2 3,32 =1.281, p<.258

raised by IDD practitioners over fatigue efects and cognitive stress 
and allowed for more in-depth and direct feedback on each design 
consideration for the tested stimuli. 

4.2.1 Data Generation. Our data used a library of pre-generated 
synthetic datafles structured to refect the semantics of data used in 
the State of the States [17] while controlling for statistical properties
to limit the tested difculty level. We used synthetic rather than real-
world data as the amount of available real world data was too small 
to generate a reliable set of trials refecting the statistical constraints 
necessary to efectively measure performance diferences. We frst 
piloted diferent difculty levels to fnd a range of settings that 
produced comparable performance while avoiding foor and ceiling 
efects across participants with and without IDD. We generated one 
set of data fles per task, with each set containing between 55 and 
137 unique fles. Tested data and generation code are available at 
https://osf.io/vp4ac/. 

Extrema Identifcation: We generated extrema data by frst gen-
erating a set of four uniformly-spaced pseudorandom values be-
tween 10 and 100 pixels. We interpolated these points using a cubic 
b-spline and added Perlin noise to introduce variations in the data.
The magnitude of the noise was manually tuned to heuristically
align with real world datasets [17]. We sampled the resulting curve
at 18 regular intervals (one per year) and adjusted the largest sample
value such that the diference between the largest and next largest
value was between one and fve pixels.

Trend Estimation: We generated each trend dataset by frst sam-
pling a linear function with a random slope and intercept at 18 
equal intervals (one per year) and, if necessary, uniformly scaling 
the resulting samples to fall between 10 and 100. We then applied 
Perlin noise to these values to integrate noise into the signal, with 
noise level again adjusted heuristically to refect patterns in corre-
sponding real world data. We computed the new trend slope of the 
adjusted data using linear regression and fltered out any datasets 
that were too difcult or too easy, with difculty thresholds tuned 
in piloting. Our fnal datasets included only those datasets with 
slopes whose absolute value fell between 0.18 and 3.2. 

Value Comparison: Value comparison datasets consisted of fve
percentage values summing to 100%: a target proportion, two dis-
tractor proportions that were a fxed amount less than the tar-
get, and two random additional proportions. We generated these 

datasets by frst assigning a random value for the target category 
between 14% and 30%. We then set the values for two distractor cat-
egories (the near distractor and far distractor) such that the values 
for the two distractors were: 

near = valuetarдet − δ ; f ar = valuetar дet − δ − γ (1) 

where δ was between 4% and 10% and γ was between 1% and 2% 
for each dataset. The values of the remaining two categories were 
set by randomly dividing the remaining percentages such that all 
categories were at least 10%. 

Value Estimation: We created value estimation datasets by frst
randomly setting a target category to either 33% or 66%. We then 
adjusted the category to fall clearly into one of the three responses 
intervals that participants had to choose from (“Less than 33%,” 
“33% - 66%,” or “More than 66%”) by either adding or subtracting 
a random value between 1% and 3%. We randomly divided the 
remaining percentages such that each category had a value of at 
least 5%. 

For all tasks, we confrmed post-hoc that the above constraints 
were satisfed and removed any datasets failing to meet these con-
straints or falling outside of logical thresholds (e.g., percentages 
summing to more than 100%). Datasets were randomly mapped to 
stimuli without replacement. 

4.3 Procedure 
The study consisted of fve phases: (1) Informed Consent, (2) Screen-
ing, (3) Tutorial, (4) Formal Study, and (5) Demographic Question-
naire. Due to constraints from COVID-19, we conducted each inter-
view as a Zoom video meeting with one experimenter. Participants 
and, where applicable, their legal guardians received a consent form 
and PDF tutorial on how to join a Zoom meeting 24 hours prior 
to each interview. At the start of each interview, we informed par-
ticipants that the video would be recorded and sent them a study 
link. We then asked them to open the link and share their screen to 
give shared context for any clarifying questions and for the inter-
view. The screening phase confrmed whether participants did or 
did not have an IDD by asking them to self-report any cognitive 
disabilities. 

Participants then received instructions about the study and com-
pleted 15 tutorial questions that refected diferent visualization 
conditions seen in the study using easy datasets (i.e., those with 
lower difculty levels than the actual study questions). Participants 
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received feedback on whether they answered the tutorial questions 
correctly after they reported each answer. We encouraged partici-
pants to ask any questions they had when fnishing these tutorials 
and noted that the ofcial study would be more difcult. After the 
tutorial, participants had a chance to pause before proceeding to 
the formal study. 

The formal study consisted of two blocks, one per dataset type. 
The frst block tested time series datasets and contained 24 trials 
(2 chart types × 3 embellishment levels × 2 continuity levels × 2 
tasks) presented in a random order. The dataset used to render each 
stimulus was randomly drawn from a central database. 

Participants clicked a button to begin the formal trials, allowing 
them to read the instructions and ask any questions before continu-
ing. For each question, they selected a radio button refecting their 
answer and clicked “Next” to move to the next stimulus. Response 
time was measured between when the stimulus was rendered and 
when the button was clicked. After the last trial in a block, partic-
ipants entered an interview session, and were asked about their 
thoughts on the visualizations they used for that dataset. This in-
terview was composed of six questions arranged hierarchically and 
sequentially as described in §4.2, with each visualization shown 
as a clickable image button. After walking through the interview 
questions with the experimenter, participants started the second 
block. The second block had 36 trials (3 chart types × 3 embellish-
ment levels × 2 continuity levels × 2 tasks). The procedure was 
otherwise the same as in the frst block. 

After completing the formal study, participants were directed 
to a demographic questionnaire and ended with an opportunity 
for participants to provide verbal or written feedback on our study. 
Upon submission, they were compensated with a $10 Amazon gift 
card for their participation. 

4.4 Participants & Platform 
We recruited 34 participants with normal or corrected-to-normal 
vision (µaдe = 30.3, σaдe = 9, 19 female, 15 male) from populations
with and without intellectual and developmental disabilities in the 
United States. Twelve of our participants had diagnosed IDD: six 
had an intellectual disability and six had autism spectrum disor-
der. While we anticipate that people with IDD represent a diverse 
range of abilities compared with standard populations, we group 
participants across these disabilities to generate preliminary insight 
into general accessibility challenges associated with IDD. Disen-
tangling efects for diferent IDD can be challenging due to the 
co-morbity challenges discussed in §2 as well as ambiguities in di-
agnoses, variance within the same class of disability, and the size of 
the population [4]. While future work should strive to understand 
diferences within this diverse group, we seek to instead establish 
preliminary diferences associated with IDD. 

Accessibility studies seldom compare disabled and non-disabled 
participants. However, one of the primary goals of this study is 
to understand whether people with IDD require diferent design 
considerations than non-disabled people, whose needs traditional 
visualization guidelines refect. In line with prior studies focused on 
eliciting the unique circumstances of people with IDD (e.g., [26, 30]), 
we recruited non-disabled participants to serve as a control popula-
tion to help identify the unique needs of people with IDD. Unlike 

visual or motor impairments, it is unclear whether traditional visu-
alization guidelines hold for people with IDD. Comparison against 
a control population allows us to determine whether design can 
infuence accessibility to understand if people with IDD process vi-
sualizations diferently from the populations used to generate most 
visualization guidelines. However, future studies should carefully 
investigate whether such a comparison is necessary to efectively 
achieve their goals to avoid inadvertent harm. 

5 RESULTS 
We analyzed the results for each task using generalized linear mod-
els (GLiMs) with accuracy and response time as dependent variables 
and ability level, chart type, embellishment, and continuity as in-
dependent variables. We included interaction efects between the 
three main design variables and ability level. Though our data 
was normally distributed, we use GLiMs due to the numerical im-
balance in populations sizes. We use contrast tests for post-hoc 
analyses. Table 1 summarizes our results. For legibility, we include 
all test statistics in the table, but only report means and 95% boot-
strapped confdence intervals for signifcant efects in this section. 
Anonymized data is available at https://osf.io/vp4ac/. 

People with IDD performed signifcantly above chance on aver-
age for all tasks. We found signifcant interaction efects between 
ability level and all three design variables and performance for at 
least one task, indicating where performance difered between dis-
abled and non-disabled participants as a function of visualization 
design. These results collectively suggest that visualizations can 
be designed to support users with IDD, but that those designs may 
require a diferent set of guidelines. We explore the link between 
performance and each of our three design considerations in turn. 

5.1 H1: Chart Type 
We tested two chart types for time series data—bar charts and 
line graphs—and three chart types for proportion data—pie charts, 
stacked bar charts, and treemaps. Figure 3 summarizes signifcant 
results. 
Chart Type: Quantitative Results 
We found signifcant general diferences between chart type and 
performance in three of our four tested tasks (extrema, value esti-
mation, and value comparison). We found signifcant diferences 
between participants with IDD and our control population for ex-
trema and value estimation. For time series data, people were signif-
icantly more accurate with bar charts (90.3% ± 7.0%) than with line 
graphs (80.6% ± 9.39%) in estimating the largest value, but we found 
no signifcant efects for trend estimation. When estimating values 
in proportion data, we found that people were generally better 
with stacked bars (64.2% ± 6.6%) than with pie charts (53.9% ± 6.9%, 
χ2(2, 32) = 9.025, p < .011), contrary to results from Simkin &
Hastie [48]. However, this efect was exacerbated for people with 
IDD. While chart type did not signifcantly afect performance 
for non-disabled users, people with IDD were more than twice as 
accurate with stacked bar charts (54.2% ± 10.2%) than pie charts 
(25.0%±10.3%, χ2(5, 32) = 10.264, p < .006). People with IDD using
pie charts estimated value intervals at a rate less than chance. 

Chart Type: Qualitative Results 
Our interviews identifed notable diferences in preferences for 

https://osf.io/vp4ac/


CHI ’21, May 8–13, 2021, Yokohama, Japan Keke Wu, Emma Petersen, Tahmina Ahmad, David Burlinson, Shea Tanis, and Danielle Albers Szafir 

MEAN EXTREMA ACCURACY FOR CHART TYPE

Chart Type
bar line

Ac
cu

ra
cy

0.00

0.20

0.40

0.60

0.80

1.00

IDD
control

(a) 

MEAN ESTIMATION ACCURACY FOR CHART TYPE

Chart Type 
bar pie tree

Ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

IDD
control

(b) 

Figure 3: Mean accuracy across chart types for (a) extrema 
and (b) value estimation (grey = non-diabled population, 
purple = IDD population; error bars represent 95% conf-
dence intervals). Bar charts aforded performance compara-
ble between the two populations while line graphs, the con-
ventional method of representing time series, led to worse 
performance diferences. While treemaps ofered generally 
lower performance for value comparisons, people with IDD 
struggled to estimate quantities from pie charts. 

chart types across tasks and visual strategies for reasoning over 
those chart types between people with IDD and our control popu-
lation. For extrema, participants from both populations preferred 
bar charts to line graphs. While the control population appreciated 
the discreteness of bars, people with IDD found bars more visually 
appealing and felt it ofered more detail. However, for trends, the 

control population consistently preferred line graphs while people 
with IDD expressed mixed preferences. One participant with an 
IDD noted, “the rising bars are like steps and stairs and that helps 
me see where it goes (P4-IDD).” In contrast, a participant without an
IDD commented that, "the line graph helps me connect those dots 
and shows the overall fuctuation in data. Though the bar graph 
is also doing the same thing, I fnd the line chart more concise 
and clear looking (P10)." These descriptions point to potential dif-
ferences in sensemaking: while our control group preferred the 
minimal data-to-ink ratio of the line graph, participants with IDD 
tended to prefer chart types that let them systematically progress 
through the values in the visualization. 

Both populations showed a strong preference for pie charts over 
the stacked bar chart and treemap for proportion data. Non-disabled 
participants felt that treemaps had “just too much going on (P11),”
noting that “it’s just that the pie chart is bigger and gives me a lot 
more details than a skinny stripe [the stacked bar] (P12).” Partici-
pants in the control group also recognized pie charts from math 
courses. However, participants with IDD tended to express their 
preferences for pie charts using analogs to real-world objects, as 
with the “stair” metaphor with bar charts noted for trends. One 
participant with IDD found the pie chart easier to look at because 
"it’s like a pizza or clock that comes with diferent colors, and I can 
easily break it down into slices (P2-IDD)."

Chart Type: Synthesis 
Participants tended to prefer familiar representations in line with 
prior guidelines overall (bars for value, lines for trend, pies for 
proportion); however, people with IDD had diferent preferences for 
trend estimation than non-disabled participants or prior studies [60]. 
While we found that the optimal mapping aligned across both 
populations for three of the four tasks, people with IDD struggled 
to estimate quantities from pie charts despite an overall subjective 
preference for pie charts. These observations confrmed intuitions 
from our collaborators and other experts, who often use techniques 
like stacked bar charts in an efort to create accessible publications 
for self-advocacy [17]. Participants with IDD also tended to reason 
about visualized data using real world metaphors based on the shape 
of the visual encoding. The confict between subjective preference 
and objective performance indicates a novel design opportunity 
to understand how charts might map to familiar shapes or objects 
while still supporting accurate inference. 

5.2 H2: Embellishment 
We tested three levels of embellishment across both data types: 
abstract marks, chart junk (a cartoon money stack with dollar sign 
logo or a set of stick fgures), and icons (dollar signs or stick fgures, 
§4.1). Figure 4 summarizes our fndings.
Embellishment: Quantitative Results 
We found efects of embellishment for the two time series tasks 
(extrema and trend). Icons (11.6s ± 1.2s) were signifcantly faster 
overall than chart junk (14.6s ± 2.0s) or abstract marks (14.7s ± 2.6s) 
for trend estimation. However, using icons marginally increased 
diferences in error rates between participants with IDD (81.3% ± 
11.5%) and our control population (98.9% ± 2.2%) when estimating 
extrema. 
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Figure 4: Mean performances across embellishments for (a) extrema accuracy and (b) trend RT (grey = non-disabled population, 
purple = IDD population; error bars represent 95% confdence intervals). Icons signifcantly improved response time for people 
with IDD, but introduced interpretation barriers in extrema tasks. Chart junk, however, may mitigate disparities between 
populations. 

Embellishment: Qualitative Results 
Despite the decreases in accuracy for estimation, we found par-
ticipants with IDD had an overall stronger preference for icons 
than those without IDD. Both populations found chart junk over-
laid on a visualization distracting, but noted that it could also help. 
One participant with an IDD noted, “[an icon] adds a little variety 
and makes me feel much more engaged (P2-IDD).” However, the 
context semantic information is applied to may change preferences: 
one participant noted that “the dollar sign is universal and it’s 
self-explanatory—the data is about money—but I didn’t necessarily 
make that association between stick fgure to people. It’s easy to 
get overlooked (P15).” Participants saw imagery as a trade-of that 
could make values harder to compare. One participant noted, “this 
people chart looks interesting, however it’s only helpful when the 
two people fgures have dramatic diferences; when they are small 
or close, I can’t really tell the diference (P20).” 

We also observed a diference within participants with disabil-
ities: while people with intellectual disabilities tended to remark 
positively on embellishments, participants with austism tended to 
prefer abstract visualizations over embellished ones, in line with 
recommendations for visual simplicity from the W3C [4]. These ef-
fects manifested signifcantly more strongly with proportion charts 
than time series. One participant repeatedly noted that “clarity 
is important, the people chart is just not as clear as the solid pie 
(P32-IDD).” Another remarked that they “defnitely [didn’t] like the 
one with the people fgure, it’s confusing and it hurts my eyes. 
(P14-IDD).” 

Embellishment: Synthesis 
Our results present mixed support for observations from practi-
tioners working with IDD populations and from prior research on 
pictorial use in mathematics [52, 61] that imagery can help people 
with IDD better reason about data. While people were signifcantly 
faster at estimating values with icons generally, we found that 
icons could also degrade performance, and people found them both 
engaging and distracting. Interestingly, we found nearly identical 
performance for extrema when chartjunk was present. This appar-
ent lack of diference may identify a case where design can help 
eliminate disparities between populations; however, given the high 
overall performance and existing controversy around chart junk 
[32], confrming the benefts of chart junk for accessible design is im-
portant future work. The tension in objective performance between 
time and accuracy indicates that visualization design knowledge 
may provide a diferent context for understanding mathematical 
reasoning for people with IDD than word problems used in edu-
cation research [52, 61]. Further investigating the intersection of 
math education and visualization literacy for data accessibility is 
key future work. 

Our qualitative results indicate that embellishments may cre-
ate higher engagement and interest, which aligns with previous 
fndings [32]. Increased engagement may help address issues of 
limited attention that arise with many IDD, as noted by our collab-
orators. While participants with IDD were able to arrive at compa-
rable answers across diferent embellishment types, having visual 
cues from semantic imagery helped them to arrive at the answer 
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Figure 5: Mean performances across data type for (a) extrema accuracy, (b) trend RT and (c) value comparison accuracy (grey 
= non-disabled population, purple = IDD population; error bars represent 95% confdence intervals). People with IDD were 
faster and more accurate with discrete encodings in time series data, mitigating disparities with the control population. 

faster. However, our proportion results suggest that semantic im-
ages represent trade-ofs depending on the image used [10]. In some 
cases, people build more natural associations between certain con-
cepts (e.g., dollar sign and spending) than they do with others (e.g., 
stick fgure and population) due to acquired familiarity. Further 
studies should explore how the kinds of pictorial cues used in dif-
ferent visualization designs changes these results. Our qualitative 
observations also surfaced diferences with participants with autism 
and participants with intellectual disabilities. While we found no 
notable patterns in individual diferences for our objective mea-
sures, diferences in subjective responses with regard to clarity and 
complexity indicate that analysts may have unique needs based on 
their own abilities and experiences. 

5.3 H3: Continuity 
We tested two levels of continuity across both data types: traditional 
continuous encodings (e.g., length or angle) and countable discrete 
marks (e.g., isotypes and scatterplots). Figure 5 summarizes our 
results. 

Continuity: Quantitative Results 
Performance was infuenced by continuity for three of the four 
tasks (extrema, trend, and value comparisons). People were signif-
cantly more accurate at fnding the largest of a set of values using 
discrete encodings (95.6% ± 2.9%) than continuous (89.7% ± 2.0%). 
They also estimated trends more quickly with discrete encodings 
(12.9s ± 1.3s) than with continuous encodings (14.4s ± 2.0s). How-
ever, these diferences appear to driven by participants with IDD. 
While performance in the control group was comparable across 
conditions, for people with IDD, discrete encodings provided 20% 
faster trend detection on average (16.8s ± 2.7s) than continuous 
encodings (21.1s ± 4.9s). We found that discrete encodings also sig-
nifcantly improved extrema estimation accuracy for participants 
with IDD (91.7% ± 6.5% for discrete encodings versus 79.2% ± 9.6% 
for continuous encodings), nearly eliminating overall performance 
diferences between the two populations. 

Continuity: Qualitative Results 
Participants from both populations had a strong preference for 
discrete marks in bar charts and stacked bar charts, and but dis-
liked discretized line graphs, pie charts and treemaps. Both groups 
felt that potentially being able to count elements making accurate 
judgments overall, but some participants found the charts too clut-
tered: one participant with IDD noted, "it’s up to how many dots 
you have. The sunshine looking chart [discrete pie chart] is just 
all over the place and looks overwhelming (P4-IDD)." With discrete
line charts (scatterplots), people noted that they were still men-
tally trying to connect points to estimate values. People with IDD 
noted that discrete marks could overencourage counting, noting 
that with treemaps, they found themselves counting marks rather 
than estimating as they felt that would lead to the most precise 
outcome. 
Continuity: Synthesis 
While classical studies in visualization suggest that continuous 
encodings are more intuitive for estimating trend and discrete for 
estimating values [60], our results suggest that the benefts of dis-
crete representations provide more cognitive support, in line with 
observations about working memory from visualization [27] and 
education [61]. However, we did not see the same benefts for pro-
portion judgments. This discrepancy leads us to believe that while 
axis-aligned discrete marks aid performance, people may focus too 
much on explicitly counting or other strategies that slow response 
times for non-axis aligned comparisons. Our subjective results 
support this conclusion: people found themselves counting and 
second-guessing themselves when discrete marks were not axis-
aligned. Further exploration is needed to confrm this hypothesis; 
however, the mixed benefts of discretization suggest that discrete 
encodings can signifcantly support comprehension in time series 
data. 

6 DISCUSSION 
Conventional design knowledge in visualization focuses on tradi-
tional populations. However, people with IDD process information 
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diferently, creating new challenges for visualization design. As frst 
steps towards understanding cognitively accessible visualization, 
we measured how quickly and accurately people with and without 
IDD interpret data with diferent chart types, embellishments, and 
continuity. 

We found that people with IDD were more sensitive to visual-
ization design than non-disabled populations. The diferences in 
performance show mixed benefts of pictorial cues and signifcant 
benefts of working memory aids, echoing fndings from the educa-
tion literature and somewhat contradicting conventional minimal-
istic design approaches. While designs could signifcantly improve 
performance for people with IDD, we found that designs improving 
accessibility did not degrade performance for the control popu-
lation. This discrepency indicates that developers can design for 
accessibility without reducing the universal communicative power 
of their visualizations. The success or failure of these designs varied 
as a function of the type of data being analyzed. We synthesize our 
results into the following design guidelines . 

(1) Avoid pie charts: Experts consistently indicated that they avoid
pie charts when designing accessible materials. Our results directly
support this intuition: people with IDD struggled to estimate quan-
tities with pie charts and were more than twice as accurate with
stacked bar charts and treemaps. However, they preferred pie charts
and treemaps over stacked bar charts as currently employed in data
materials for supporting IDD self-advocacy [17]. Our interviews
revealed that people with IDD felt that the familiar block shapes of
treemaps helped them understand the data. Our results, as well as
those from Kosara [34], suggest that treemaps have their own limi-
tations for proportional comparisons. We instead posit that while
stacked bars and treemaps are both signifcantly more accessible,
alternative designs using large, regularly-shaped marks may also
ofer high preference and performance.

(2) Use familiar metaphors: People with IDD often mentally rea-
soned about data through analogs to real world objects, such as
stairs and pizzas. They preferred using chart types whose struc-
tures evoked real world shapes, and, for time series, these structures
appear to scafold reasoning about data in ways that signifcantly
improve performance. These fndings refect the benefts of seman-
tic pictorial information in supporting mathematical reasoning [52]
and may help build familiarity with data that transcend diferences
in education [35] to instead build on diferences in experience.
These metaphors put performance and preference at odds with
recommendations from traditional populations, such as suggest-
ing a preference for bars over lines in estimating trends [47, 60].
Future work should explore the design space of visualizations
whose physical structures refect real world metaphors to enhance
accessibility.

(3) Manage visual complexity: While the use of semantic embel-
lishments remains controversial in visualizations generally [32],
mathematics education noted substantial benefts for people with
IDD and such embellishments are frequently used by practitioners
to enhance communication [4, 17]. However, we found mixed sup-
port for this hypothesis: while icons were quicker to use, they
introduced performance gaps over other methods in identifying
extrema. However, we found preliminary evidence that chart junk

may signifcantly mitigate disparities introduced by visualization 
design. Participants noted that while visual embellishments could 
add interest and increase engagement, that they could also over-
whelm. Collectively, these observations suggest that simple, mean-
ingful imagery has the potential to support data access; however, 
such additions should be used intentionally and sparingly and in 
consultation with the target user group. 

(4) Use discrete encodings for axis-aligned representations:
Despite a preference for continuous encodings for proportion data,
discrete encodings improved accuracy and response times for peo-
ple with IDD, signifcantly reducing disparities with the control
group. Unlike the control group, participants strongly preferred
discrete bar charts, especially abstract bars. They found that being
able to count the points in bars with close values helped them com-
pare values that were further apart. These fndings align with prior
work showing working memory benefts of “chunking” visual in-
formation [61]. However, participants also noted that discretization
integrates the temptation to count and to second-guess their intu-
itions. This was especially problematic in visualizations where the
dots in a group varied in more than one dimension (e.g., treemaps
or pie charts). Diferences in preference and performance by people
with IDD compared to our control population and conventional
guidelines—both of which privilege continuous encodings—raise
key considerations for how discretization and corresponding work-
ing memory benefts [27, 61] may enhance visualization accessi-
bility. However, confrming this connection remains critical future
work.

While the above recommendations provide preliminary insight 
into data accessibility, we note that there were no one-size-fts-all so-
lutions. Instead, we fnd that the tested design factors illustrate key 
tensions between conventional guidelines and accessible data. Our 
results provide preliminary evidence that some design decisions 
may nearly eliminate performance disparities between the two pop-
ulations. These recommendations ofer new directions grounded in 
both the preferences and unique abilities of analysts with IDD and 
ofer preliminary qualitative insight into how the considerations de-
signers make in creating visualizations may need to systematically 
shift. For example, instead of minimizing data-to-ink, designers 
may wish to maximize working memory or connections to famil-
iar objects. We anticipate that cognitively accessible visualizations 
open a rich design space for innovation that removes barriers to 
data use. 

6.1 Limitations & Future Work 
We ofer preliminary insight into accessible visualization. In doing 
so, we made several choices in the design and implementation of 
our study that ofer opportunities for future work. For example, we 
aggregated several diferent disabilities into a single broad category 
to identify preliminary insight into the necessity of cognitively 
accessible visualization. IDD are known to be difcult to diagnose 
and often co-occur with other learning or physical disabilities [36], 
limiting the benefts of more focused samples for design applica-
tions. While our sample size prevented us from reliably analyzing 
patterns in individual diferences (we provide preliminary analyses 
of these diferences in our OSF supplement), we anticipate that 
truly inclusive solutions will need to adapt to the needs of each 
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user. Such techniques could further build on our results, methods 
from graphical perception, and measurement techniques from vi-
sualization literacy to create methods for measuring and adapting 
data displays to the unique abilities of diferent users. 

When designing the tested visualizations, we chose a full-
factorial approach to extensively examine our tested variables. How-
ever, some of the variables did not pair as intuitively as others. For 
example, icons did not map naturally to continuous pie charts with-
out unreasonably distorting the shape of the icon. These mapping 
challenges led to some less conventional designs and small inequiv-
alences between variable combinations. When possible, we used 
compromise representations that refected choices used by design-
ers in practice. Our results revealed no clear universal performance 
outliers and largely align with guidelines from visualization or ed-
ucation, indicating that less conventional designs did not unduly 
bias our fndings. However, future work should explore a broader 
suite of designs and tasks to replicate our results. 

We only examined a limited variety of designs tied to specifc use 
cases. For example, chart junk focused on simple graphics tied to the 
semantic concepts they intended to refect, which may limit the em-
bellishment strategies to specifc but familiar semantics. However, 
other imagery, such as less stylized silhouettes, may provide better 
cognitive anchors into the data. Future work should look more 
closely at the link between semantics and chart embellishment to 
expand these fndings. We chose fve common chart types and used 
their classical mapping to certain tasks. While this selection builds 
on known best practices for traditional users, it also may exacer-
bate existing educational inequities [5] and cause the familiarity 
biases we saw in our subjective results. However, participatory 
design initiatives may instead lead to innovative visualization solu-
tions [39, 44]. Part of truly accessible visualization design will be 
determining how to create visualizations that make sense to each 
user to complement our empirical approach. 

Finding visualizations that perform well for both populations 
can ofer preliminary insight into universal design for visualization. 
Our quantitative results indicate that choices like continuous, unem-
bellished stacked bars or discrete bar charts with minimal chartjunk 
provide generally accessible visualization designs. Although our 
results can help identify a quantitative middle ground for universal 
design; we found that people with IDD had qualitatively very dif-
ferent views on the presented stimuli than those without. While we 
should ultimately aim to balance the needs of both populations with 
and without IDD in visualization design either through adaptive 
approaches or by developing more universal design guidelines, we 
do not yet have sufcient evidence to do so efectively and with 
appropriate care for the special characteristics of this population as 
well as their individual diferences. Substantially more work is nec-
essary before these results could be translated into truly universal 
approaches to visualization design. 

6.2 The Need for Data Accessibility 
Our results only scratch the surface of data accessibility for people 
with intellectual and developmental disabilities. While the above 
directions represent potential next steps, our discussions with par-
ticipants and practitioners illuminated both a desire to understand 
how to design visualizations that better serve people with IDD and 

a frustration with the historical lack of inclusion of this population 
and subsequent feelings of invisibility. Our study indicates that ef-
fective designs difer for people with IDD; however, our discussions 
with the community revealed broader needs for more inclusive 
visualization. 

Participants noted that data accessibility is a matter of fairness 
and respect. Data analytics is about solving problems. Being able 
to make informed decisions using data is a critical skill for both 
personal and professional advancement. Without basic data access, 
people with IDD rely on others to relay relevant personal and public 
information and make decisions using that data. People with IDD 
have experienced these impacts directly, noting a desire to “speak up 
for yourself, whenever you can (P26–IDD).” Making data accessible
will empower people with disabilities to discover new strengths 
and abilities. It will ofer them new ways to be involved in their 
communities and aford greater independence in an increasingly 
data-driven world. 

Our study is originally inspired by an onging efort that supports 
fnancial self-advocacy for people with IDD [17]. This efort refects 
a growing interest within AAIDD [56] in educating people with 
IDD about data and using visualization in the disabled community. 
For example, public organizations are exploring means of using 
of visualization to enhance policy understanding amongst self-
advocates with IDD.5 In order to develop efective tools, we must
understand where current practices fall short and develop innova-
tive co-designed solutions that truly refect the needs and abilities 
of people with IDD. As one of our participants noted, “Awareness is 
important, as someone with invisible disabilities, you have to make 
sure your voice is heard (P26–IDD).” Participants saw the lack of
accessible visualization tools and inclusion in the design of these 
tools as a critical barriers towards efective self-advocacy. 

7 CONCLUSION 
Guidelines for visualization design emphasize non-disabled popula-
tions. The resulting designs inhibit people with IDD from efectively 
engaging with data. To understand preliminary components of ac-
cessible visualization design, we conducted a two-phase web-based 
quantitative experiment to measure how accurately and quickly 
people with and without IDD interpret visualized data. Our results 
led to four preliminary design suggestions for accessible visualiza-
tion. With the proliferation of data-driven reasoning and decision 
making increasing across all aspects of life, making data accessi-
ble for self-determination is an increasingly critical challenge. We 
found that there is a desire from the IDD community for more ac-
cessible tools. Organizational partners expressed strong enthusiasm 
for improved communication tools, and self-advocates were excited 
to collaborate on tools to beneft the community. Making visual-
ization cognitively accessible will not only help people with IDD, 
but may also reveal new guidelines and designs for general under-
standing and decision making. We believe diversity and inclusion 
in visualization should also encompass designing visualizations 
that empower people with diverse abilities. 

5http://www.integratedsupports.org/

https://5http://www.integratedsupports.org
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